Conditions for Nonnegative Curvature on Vector Bundles and Sphere Bundles
نویسنده
چکیده
This paper addresses Cheeger and Gromoll’s question of which vector bundles admit a complete metric of nonnegative curvature, and relates their question to the issue of which sphere bundles admit a metric of positive curvature. We show that any vector bundle which admits a metric of nonnegative curvature must admit a connection, a tensor, and a metric on the base space which together satisfy a certain differential inequality. On the other hand, a slight sharpening of this condition is sufficient for the associated sphere bundle to admit a metric of positive curvature. Our results sharpen and generalize Walschap and Strake’s conditions under which a vector bundle admits a connection metric of nonnegative curvature.
منابع مشابه
Twisting and Nonnegative Curvature Metrics on Vector Bundles over the round Sphere
A complete noncompact manifold M with nonnegative sectional curvature is diffeomorphic to the normal bundle of a compact submanifold S called the soul of M . When S is a round sphere we show that the clutching map of this bundle is restricted; this is used to deduce that there are at most finitely many isomorphism types of such bundles with sectional curvature lying in a fixed interval [0, κ]. ...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملPara-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملNonnegatively Curved Vector Bundles with Large Normal Holonomy Groups
When B is a biquotient, we show that there exist vector bundles over B with metrics of nonnegative curvature whose normal holonomy groups have arbitrarily large dimension.
متن کاملTransitive Holonomy Group and Rigidity in Nonnegative Curvature
In this note, we examine the relationship between the twisting of a vector bundle ξ over a manifold M and the action of the holonomy group of a Riemannian connection on ξ. For example, if there is a holonomy group which does not act transitively on each fiber of the corresponding unit sphere bundle, then for any f : Sn → M , the pullback f∗ξ of ξ admits a nowhere-zero cross section. These facts...
متن کامل